Spatial registration for functional near-infrared spectroscopy: From channel position on the scalp to cortical location in individual and group analyses

نویسندگان

  • Daisuke Tsuzuki
  • Ippeita Dan
چکیده

Functional near-infrared spectroscopy (fNIRS) has now become widely accepted as a common functional imaging modality. In order for fNIRS to achieve genuine neuroimaging citizenship, it would ideally be equipped with functional and structural image analyses. However, fNIRS measures cortical activities from the head surface without anatomical information of the object being measured. In this review article, we will present a methodological overview of spatial registration of fNIRS data to overcome this technical drawback of fNIRS. We first introduce and explore the use of standard stereotaxic space and anatomical labeling. Second, we explain different ways of describing scalp landmarks using 10-20 based systems. Third, we describe the simplest case of fNIRS data co-registration to a subject's own MRI. Fourth, we extend the concept to fNIRS data registration of group data. Fifth, we describe probabilistic registration methods, which use a reference-MRI database instead of a subject's own MRIs, and thus enable MRI-free registration for standalone fNIRS data. Sixth, we further extend the concept of probabilistic registration to three-dimensional image reconstruction in diffuse optical tomography. Seventh, we describe a 3D-digitizer-free method for the virtual registration of fNIRS data. Eighth, we provide practical guidance on how these techniques are implemented in software. Finally, we provide information on current resources and limitations for spatial registration of child and infant data. Through these technical descriptions, we stress the importance of presenting fNIRS data on a common platform to facilitate both intra- and inter-modal data sharing among the neuroimaging community.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants.

Functional near-infrared spectroscopy (fNIRS) is becoming a popular tool in developmental neuroscience for mapping functional localized brain responses. However, as it cannot provide information about underlying anatomy, researchers have begun to conduct spatial registration of fNIRS channels to cortical anatomy in adults. The current work investigated this issue with infants by coregistering f...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Sensor space group analysis for fNIRS data

BACKGROUND Functional near-infrared spectroscopy (fNIRS) is a method for monitoring hemoglobin responses using optical probes placed on the scalp. fNIRS spatial resolution is limited by the distance between channels defined as a pair of source and detector, and channel positions are often inconsistent across subjects. These challenges can lead to less accurate estimate of group level effects fr...

متن کامل

Using individual functional channels of interest to study cortical development with fNIRS.

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that could be uniquely effective for investigating cortical function in human infants. However, prior efforts have been hampered by the difficulty of aligning arrays of fNIRS optodes placed on the scalp to anatomical or functional regions of underlying cortex. This challenge can be addressed by identifying cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2014